
UNIT V

CLIENT SIDE ESSENTIALS

JAVA SCRIPT OBJECT AND FUNCTIONS :

What is JavaScript ?

 JavaScript is a dynamic computer programming language. It is lightweight and most

commonly used as a part of web pages, whose implementations allow client-side script

to interact with the user and make dynamic pages. It is an interpreted programming

language with object-oriented capabilities.

 JavaScript was first known as LiveScript, but Netscape changed its name to JavaScript,

possibly because of the excitement being generated by Java. JavaScript made its first

appearance in Netscape 2.0 in 1995 with the name LiveScript. The general-purpose

core of the language has been embedded in Netscape, Internet Explorer, and other web

browsers.

The ECMA-262 Specification defined a standard version of the core JavaScript language.

 JavaScript is a lightweight, interpreted programming language.

 Designed for creating network-centric applications.

 Complementary to and integrated with Java.

 Complementary to and integrated with HTML.

 Open and cross-platform

Client-Side JavaScript

 Client-side JavaScript is the most common form of the language. The script should be

included in or referenced by an HTML document for the code to be interpreted by the

browser.

 It means that a web page need not be a static HTML, but can include programs that

interact with the user, control the browser, and dynamically create HTML content.

 The JavaScript client-side mechanism provides many advantages over traditional CGI

server-side scripts. For example, you might use JavaScript to check if the user has

entered a valid e-mail address in a form field.

http://www.ecma-international.org/publications/index.html

<script type = "text/javascript">

<!--

 The JavaScript code is executed when the user submits the form, and only if all the

entries are valid, they would be submitted to the Web Server.

 JavaScript can be used to trap user-initiated events such as button clicks, link

navigation, and other actions that the user initiates explicitly or implicitly.

Advantages of JavaScript

The merits of using JavaScript are −

 Less server interaction − can validate user input before sending the page off

to the server. This saves server traffic, which means less load on your server.

 Immediate feedback to the visitors − don't have to wait for a page reload to

see if they have forgotten to enter something.

 Increased interactivity − can create interfaces that react when the user hovers

over them with a mouse or activates them via the keyboard.

 Richer interfaces − can use JavaScript to include such items as drag-and-drop

components and sliders to give a Rich Interface to your site visitors.

JavaScript - Functions

 A function is a group of reusable code which can be called anywhere in your program.

Functions allow a programmer to divide a big program into a number of small and

manageable functions.

 Like any other advanced programming language, JavaScript also supports all the

features necessary to write modular code using functions. functions

like alert() and write() .

Function Definition

 Use a function, we need to define it. The most common way to define a function in

JavaScript is by using the function keyword, followed by a unique function name, a

list of parameters (that might be empty), and a statement block surrounded by curly

braces.

Syntax

The basic syntax is shown here.

<script type = "text/javascript">

<!--

function sayHello() {

alert("Hello there");

}

//-->

</script>

<head>

<script type = "text/javascript">

function sayHello() {

document.write ("Hello there!");

}

</script>

</head>

<body>

<p>Click the following button to call the function</p>

<form>

<input type = "button" onclick = "sayHello()" value = "Say Hello">

Example

Try the following example. It defines a function called sayHello that takes no parameters −

Calling a Function

To invoke a function somewhere later in the script, you would simply need to write the name

of that function .

<html>

function functionname(parameter-list) {

statements

}

//-->

</script>

Say Hello

<html>

<head>

<script type = "text/javascript">

function concatenate(first, last) {

var full;

full = first + last;

return full;

}

Output

Click the following button to call the function

Use different parameters inside the function and then try...

Hello!.......

The return Statement

 A JavaScript function can have an optional return statement. This is required if you

want to return a value from a function. This statement should be the last statement in a

function.

 For example, you can pass two numbers in a function and then you can expect the

function to return their multiplication in your calling program.

Example

Try the following example. It defines a function that takes two parameters and concatenates

them before returning the resultant in the calling program.

</form>

<p>Use different text in write method and then try...</p>

</body>

</html>

Call Function

Output

Click the following button to call the function

Use different parameters inside the function and then try...

AzaraAli

JavaScript - Objects

JavaScript is an Object Oriented Programming (OOP) language. A programming language can

be called object-oriented if it provides four basic capabilities to developers −

 Encapsulation − the capability to store related information, whether data or

methods, together in an object.

function secondFunction() {

var result;

result = concatenate('Zara', 'Ali');

document.write (result);

}

</script>

</head>

<body>

<p>Click the following button to call the function</p>

<form>

<input type = "button" onclick = "secondFunction()" value = "Call Function">

</form>

<p>Use different parameters inside the function and then try...</p>

</body>

</html>

 Aggregation − the capability to store one object inside another object.

 Inheritance − the capability of a class to rely upon another class (or number of

classes) for some of its properties and methods.

 Polymorphism − the capability to write one function or method that works in a

variety of different ways.

Objects are composed of attributes. If an attribute contains a function, it is considered to be a

method of the object, otherwise the attribute is considered a property.

Object Properties

Object properties can be any of the three primitive data types, or any of the abstract data types,

such as another object. Object properties are usually variables that are used internally in the

object's methods, but can also be globally visible variables that are used throughout the page.

The syntax for adding a property to an object is −

 objectName.objectProperty = propertyValue;

For example − The following code gets the document title using the "title" property of

the document object.

 var str = document.title;

Object Methods

Methods are the functions that let the object do something or let something be done to it. There

is a small difference between a function and a method – at a function is a standalone unit of

statements and a method is attached to an object and can be referenced by the this keyword.

Methods are useful for everything from displaying the contents of the object to the screen to

performing complex mathematical operations on a group of local properties and parameters.

For example − Following is a simple example to show how to use the write() method of

document object to write any content on the document.

 document.write("This is test");

User-Defined Objects

All user-defined objects and built-in objects are descendants of an object called Object.

The new Operator

var employee = new Object();

var books = new Array("C++", "Perl", "Java");

var day = new Date("August 15, 1947");

<html>

<head>

<title>User-defined objects</title>

<script type = "text/javascript">

var book = new Object(); // Create the object

book.subject = "Perl"; // Assign properties to the object

book.author = "Mohtashim";

</script>

</head>

<body>

<script type = "text/javascript">

document.write("Book name is : " + book.subject + "
");

document.write("Book author is : " + book.author + "
");

</script>

</body>

The new operator is used to create an instance of an object. To create an object,

the new operator is followed by the constructor method.

In the following example, the constructor methods are Object(), Array(), and Date(). These

constructors are built-in JavaScript functions.

The Object() Constructor

A constructor is a function that creates and initializes an object. JavaScript provides a special

constructor function called Object() to build the object. The return value of

the Object() constructor is assigned to a variable.

The variable contains a reference to the new object. The properties assigned to the object are

not variables and are not defined with the var keyword.

Example 1

Try the following example; it demonstrates how to create an Object.

Book name is : Perl

Book author is : Mohtashim

Output

JQUERY

jQuery is an open source JavaScript library that simplifies the interactions between an

HTML/CSS document, or more precisely the Document Object Model (DOM), and

JavaScript.

Elaborating the terms, jQuery simplifies HTML document traversing and manipulation,

browser event handling, DOM animations, Ajax interactions, and cross-browser JavaScript

development.

jQuery is widely famous with its philosophy of “Write less, do more.” This philosophy can

be further elaborated as three concepts:

 Finding some elements (via CSS selectors) and doing something with them (via

jQuery methods) i.e. locate a set of elements in the DOM, and then do something

with that set of elements.

 Chaining multiple jQuery methods on a set of elements

 Using the jQuery wrapper and implicit iteration

Using jQuery (JS) library on HTML page

There are several ways to start using jQuery on your web site.

1. Use the Google-hosted/ Microsoft-hosted content delivery network (CDN) to

include a version of jQuery.

2. Download own version of jQuery from jQuery.com and host it on own server or

local filesystem.

Basic syntax for any jQuery function is:

$(selector).action()

 A $ sign is to define/access jQuery

 A (selector) is to ―query (or find)‖ HTML elements in html page

 A jQuery action() is the action to be performed on the selected element(s)

</html>

$(document).ready(function () {

$("h2").click(function () {

$(this).hover();

});

});

Example:

<!DOCTYPE html>

<html>

<head>

<script src=

"https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js">

</script>

<script>

</script>

</head>

<body>

<center>

<h2 style="color: green;">

SNSRCAS

</h2>

</center>

</body>

</html>

Output:

https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js

SNSRCAS

Advantages:

 Wide range of plug-ins. jQuery allows developers to create plug-ins on top of the

JavaScript library.

 Large development community

 It has a good and comprehensive documentation

 It is a lot more easy to use compared to standard javascript and other javascript

libraries.

 JQuery lets users develop Ajax templates with ease, Ajax enables a sleeker

interface where actions can be performed on pages without requiring the entire

page to be reloaded.

 Being Light weight and a powerful chaining capabilities makes jQuery more

strong.

Disadvantages:

 While JQuery has an impressive library in terms of quantity, depending on how

much customization you require on your website, the functionality may be limited

thus using raw javascript may be inevitable in some cases.

 The JQuery javascript file is required to run JQuery commands, while the size of

this file is relatively small (25-100KB depending on the server), it is still a strain

on the client computer and maybe your web server as well if you intend to host

the JQuery script on your own web server.

JavaScript Events

 The change in the state of an object is known as an Event. In html, there are various

events which represents that some activity is performed by the user or by the browser.

When javascript code is included in HTML, js react over these events and allow the

execution. This process of reacting over the events is called Event Handling. Thus, js

handles the HTML events via Event Handlers.

 For example, when a user clicks over the browser, add js code, which will execute the

task to be performed on the event.

https://www.javatpoint.com/javascript-tutorial
https://www.javatpoint.com/html-tutorial

Some of the HTML events and their event handlers are:

Mouse events:

Event

Performed

Event

Handler

Description

Click onclick When mouse click on an element

Mouseover onmouseover When the cursor of the mouse comes over the element

Mouseout onmouseout When the cursor of the mouse leaves an element

Mousedown onmousedown When the mouse button is pressed over the element

Mouseup onmouseup When the mouse button is released over the element

Mousemove onmousemove When the mouse movement takes place.

Keyboard events:

Event Performed Event Handler Description

Keydown & Keyup onkeydown & onkeyup When the user press and then release the key

Form events:

Event

Performed

Event

Handler

Description

Focus onfocus When the user focuses on an element

Submit onsubmit When the user submits the form

Blur onblur When the focus is away from a form element

Change onchange When the user modifies or changes the value of a form

element

Window/Document events

Event

Performed

Event

Handler

Description

Load onload When the browser finishes the loading of the page

Unload onunload When the visitor leaves the current webpage, the

browser unloads it

Resize onresize When the visitor resizes the window of the browser

Click Event

<html>

<head> Javascript Events </head>

<body>

<script language="Javascript" type="text/Javascript">

<!--

function clickevent()

{

document.write("This is Java");

}

//-->

</script>

<form>

<input type="button" onclick="clickevent()" value="Who's this?"/>

</form>

</body>

</html>

OUTPUT

Javascript Events

Who is this ?

This is a java

MouseOver Event

<html>

<head>

<h1> Javascript Events </h1>

</head>

<body>

<script language="Javascript" type="text/Javascript">

<!--

function mouseoverevent()

{

alert("This is JavaTpoint");

}

XML DOM

//-->

</script>

<p onmouseover="mouseoverevent()"> Keep cursor over me</p>

</body>

</html>

What is XML DOM

 DOM is an acronym stands for Document Object Model. It defines a standard way to

access and manipulate documents. The Document Object Model (DOM) is a

programming API for HTML and XML documents. It defines the logical structure of

documents and the way a document is accessed and manipulated.

 As a W3C specification, one important objective for the Document Object Model is to

provide a standard programming interface that can be used in a wide variety of

environments and applications. The Document Object Model can be used with any

programming language.

 XML DOM defines a standard way to access and manipulate XML documents.

What does XML DOM

 The XML DOM makes a tree-structure view for an XML document.

 can access all elements through the DOM tree.

 We can modify or delete their content and also create new elements. The elements, their

content (text and attributes) are all known as nodes.

 For example, consider this table, taken from an HTML document:

<TABLE>

<ROWS>

<TR>

<TD>A</TD>

<TD>B</TD>

</TR>

<TR>

<TD>C</TD>

<TD>D</TD>

</TR>

</ROWS>

</TABLE>

1. The Document Object Model represents this table like this:

XML DOM Example : Load XML File

 Let's take an example to show how an XML document ("note.xml") is parsed into an

XML DOM object.

 This example parses an XML document (note.xml) into an XML DOM object and

extracts information from it with JavaScript.

 Let's see the XML file that contains message.

note.xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<note>

<to>sonoojaiswal@javatpoint.com</to>

<from>vimal@javatpoint.com</from>

mailto:sonoojaiswal@javatpoint.com
mailto:vimal@javatpoint.com

<body>Hello XML DOM</body>

</note>

What is AJAX?

 AJAX stands for Asynchronous JavaScript and XML. AJAX is a new technique for

creating better, faster, and more interactive web applications with the help of XML,

HTML, CSS, and Java Script.

 Ajax uses XHTML for content, CSS for presentation, along with Document

Object Model and JavaScript for dynamic content display.

 XML is commonly used as the format for receiving server data, although any

format, including plain text, can be used.

 AJAX is a web browser technology independent of web server software.

 A user can continue to use the application while the client program requests

information from the server in the background.

 Data-driven as opposed to page-driven.

Rich Internet Application Technology

 AJAX is the most viable Rich Internet Application (RIA) technology so far. It is getting

tremendous industry momentum and several tool kit and frameworks are emerging. But

at the same time, AJAX has browser incompatibility and it is supported by JavaScript,

which is hard to maintain and debug.

AJAX is Based on Open Standards

AJAX is based on the following open standards −

 Browser-based presentation using HTML and Cascading Style Sheets (CSS).

 Data is stored in XML format and fetched from the server.

 Behind-the-scenes data fetches using XMLHttpRequest objects in the browser.

 JavaScript to make everything happen.

Manipulating the Web using Jquery

 The DOM, a structure the web browser is built upon to relate with webpages. It

generates information about your webpage by interacting with the HTML file.

JQUERY?

 As stated earlier, it is a JavaScript library and the most popular one, designed to

simplify workflow for web developers. As written on the official website

―jQuery is a fast, small, and feature-rich JavaScript library.‖

 This method helps developers to Select Element, Manipulate Element, Create

Element, Add Event Listener, Animate Elements, Add Effects, and Make HTTP

Request.

WHY USE JQUERY?

 JQuery is a great tool because if it will make your workflow faster then go ahead

including it.

 Selecting an element with ―document.querySelectorAll()‖ is considered to be lengthy,

with JQuery this can be fixed just by using the ―$(dollar sign)‖ to select elements. It

also makes your code shorter and clear, for example, check out the block of code with

and without Jquery.

USING JQUERY TO MANIPULATE A WEB APP?

 Just added the mini version of JQuery to our project, so time to check if JQuery is

actually included. And we added it in our head tag so it runs first before the App runs.

To wrap this up on how to include JQuery for our project, either way, works, but we need a

script tag and a source attribute with value such as device directory or CND link.

 The Web Speech API aims to enable web developers to provide, in a web browser,

speech-input and text-to-speech output features that are typically not available when

using standard speech-recognition or screen-reader software.

 The API itself is agnostic of the underlying speech recognition and synthesis

implementation and can support both server-based and client-based/embedded

recognition and synthesis.

 The API is designed to enable both brief (one-shot) speech input and continuous

speech input. Speech recognition results are provided to the web page as a list of

hypotheses, along with other relevant information for each hypothesis.

 All portions of that report may be considered informative with regards to this

document, and provide an informative background to this document. This

specification is a fully-functional subset of that report

This section is non-normative.

 Voice Web Search

 Speech Command Interface

 Domain Specific Grammars Contingent on Earlier Inputs

 Continuous Recognition of Open Dialog

 Domain Specific Grammars Filling Multiple Input Fields

 Speech UI present when no visible UI need be present

 Voice Activity Detection

 Temporal Structure of Synthesis to Provide Visual Feedback

 Hello World

 Speech Translation

 Speech Enabled Email Client

 Dialog Systems

 Multimodal Interaction

 Speech Driving Directions

 Multimodal Video Game

 Multimodal Search

To keep the API to a minimum, this specification does not directly support the following use

case. This does not preclude adding support for this as a future API enhancement, and indeed

the Incubator report provides a roadmap for doing so.

 Rerecognition

Note that for many usages and implementations, it is possible to avoid the need for

Rerecognition by using a larger grammar, or by combining multiple grammars — both of these

techniques are supported in this specification.

3. Security and privacy considerations

1. User agents must only start speech input sessions with explicit, informed user consent.

User consent can include, for example:

o User click on a visible speech input element which has an obvious graphical
representation showing that it will start speech input.

o Accepting a permission prompt shown as the result of a call
to SpeechRecognition.start.

o Consent previously granted to always allow speech input for this web page.

2. User agents must give the user an obvious indication when audio is being recorded.

o In a graphical user agent, this could be a mandatory notification displayed by
the user agent as part of its chrome and not accessible by the web page.

o This UI element must also allow the user to stop recording.

o In a speech-only user agent, the indication may for example take the form of the
system speaking the label of the speech input element, followed by a short beep.

3. The user agent may also give the user a longer explanation the first time speech input

is used, to let the user know what it is and how they can tune their privacy settings to

disable speech recording if required.

Implementation considerations

This section is non-normative.

1. Spoken password inputs can be problematic from a security perspective, but it is up to

the user to decide if they want to speak their password.

2. Speech input could potentially be used to eavesdrop on users. Malicious webpages

could use tricks such as hiding the input element or otherwise making the user believe

that it has stopped recording speech while continuing to do so.

SpeechRecognition Methods

start() method

 When the start method is called it represents the moment in time the web

application wishes to begin recognition.

 When the speech input is streaming live through the input media stream, then

this start call represents the moment in time that the service must begin to listen

and try to match the grammars associated with this request.

 Once the system is successfully listening to the recognition the user agent must

raise a start event. If the start method is called on an already started object (that

is, start has previously been called, and no error or end event has fired on the

object), the user agent must throw an "InvalidStateError" DOMException and

ignore the call.

stop() method

 The stop method represents an instruction to the recognition service to stop

listening to more audio, and to try and return a result using just the audio that it

has already received for this recognition.

 A typical use of the stop method might be for a web application where the end

user is doing the end pointing, similar to a walkie-talkie. The end user might

press and hold the space bar to talk to the system and on the space down press

the start call would have occurred and when the space bar is released the stop

method is called to ensure that the system is no longer listening to the user.

abort() method

The abort method is a request to immediately stop listening and stop recognizing and

do not return any information but that the system is done. When the abort method is

called, the speech service must stop recognizing.

SpeechRecognition Events

 The DOM Level 2 Event Model is used for speech recognition events. The methods in the

EventTarget interface should be used for registering event listeners. The SpeechRecognition

interface also contains convenience attributes for registering a single event handler for each event

type. The events do not bubble and are not cancelable.

 For all these events, the timeStamp attribute defined in the DOM Level 2 Event interface must

be set to the best possible estimate of when the real-world event which the event object represents

occurred.

 This timestamp must be represented in the user agent’s view of time, even for events where the

timestamps in question could be raised on a different machine like a remote recognition service

(i.e., in a speechend event with a remote speech endpointer).

audiostart event

https://wicg.github.io/speech-api/#eventdef-speechrecognition-error
https://wicg.github.io/speech-api/#eventdef-speechrecognition-end
https://heycam.github.io/webidl/#invalidstateerror
https://heycam.github.io/webidl/#idl-DOMException
https://wicg.github.io/speech-api/#eventdef-speechrecognition-speechend

Fired when the user agent has started to capture audio.

soundstart event

Fired when some sound, possibly speech, has been detected. This must be fired with low

latency, e.g. by using a client-side energy detector. The audiostart event must always have been

fired before the soundstart event.

speechstart event

Fired when the speech that will be used for speech recognition has started. The audiostart event

must always have been fired before the speechstart event.

speechend event

Fired when the speech that will be used for speech recognition has ended. The speechstart event

must always have been fired before speechend.

soundend event

Fired when some sound is no longer detected. This must be fired with low latency, e.g. by using

a client-side energy detector. The soundstart event must always have been fired before

soundend.

audioend event

Fired when the user agent has finished capturing audio. The audiostart event must always have

been fired before audioend.

result event

Fired when the speech recognizer returns a result. The event must use

the SpeechRecognitionEvent interface. The audiostart event must always have been fired

before the result event.

nomatch event

Fired when the speech recognizer returns a final result with no recognition hypothesis that

meet or exceed the confidence threshold. The event must use

the SpeechRecognitionEvent interface. The results attribute in the event may contain speech

recognition results that are below the confidence threshold or may be null.

The audiostart event must always have been fired before the nomatch event.

error event

Fired when a speech recognition error occurs. The event must use

the SpeechRecognitionErrorEvent interface.

start event

Fired when the recognition service has begun to listen to the audio with the intention of

recognizing.

end event

Fired when the service has disconnected. The event must always be generated when the

session ends no matter the reason for the end.

https://wicg.github.io/speech-api/#eventdef-speechrecognition-audiostart
https://wicg.github.io/speech-api/#eventdef-speechrecognition-audiostart
https://wicg.github.io/speech-api/#eventdef-speechrecognition-speechstart
https://wicg.github.io/speech-api/#eventdef-speechrecognition-soundstart
https://wicg.github.io/speech-api/#eventdef-speechrecognition-audiostart
https://wicg.github.io/speech-api/#speechrecognitionevent
https://wicg.github.io/speech-api/#eventdef-speechrecognition-audiostart
https://wicg.github.io/speech-api/#speechrecognitionevent
https://wicg.github.io/speech-api/#dom-speechrecognitionevent-results
https://wicg.github.io/speech-api/#eventdef-speechrecognition-audiostart
https://wicg.github.io/speech-api/#speechrecognitionerrorevent

Speech Synthesis Markup Language (SSML)

<speak>

Here are <say-as interpret-as="characters">SSML</say-as> samples.

I can pause <break time="3s"/>.

I can play a sound

<audio src="https://www.example.com/MY_MP3_FILE.mp3">didn't get your MP3 audio file</audio>.

I can speak in cardinals. Your number is <say-as interpret-as="cardinal">10</say-as>.

Or I can speak in ordinals. You are <say-as interpret-as="ordinal">10</say-as> in line.

Or I can even speak in digits. The digits for ten are <say-as interpret-as="characters">10</say-as>.

I can also substitute phrases, like the _{W3C}.

Finally, I can speak a paragraph with two sentences.

<p><s>This is sentence one.</s><s>This is sentence two.</s></p>

</speak>

using SSML

Depending on your implementation, you may need to escape quotation marks or quotes in the

SSML payload that you send to Text-to-Speech. The following example shows how to format

SSML input included within a JSON object.

"{

'input':{

'ssml':'<speak>The <say-as interpret-as=\"characters\">SSML</say-as>

standard <break time=\"1s\"/>is defined by the

_{W3C}.</speak>'

},

'voice':{

'languageCode':'en-us',

'name':'en-US-Standard-B',

'ssmlGender':'MALE'

},

'audioConfig':{

'audioEncoding':'MP3'

}

}"

Reserve characters

Avoid using SSML reserve characters in the text that is to be converted to audio. When you

need to use an SSML reserve character, prevent the character from being read as code by

using its escape code. The following table shows reserved SSML characters and their

associated escape codes.

http://www.example.com/MY_MP3_FILE.mp3

Character Escape code

" "

& &

' '

< <

> >

Select a voice

Support for SSML elements

The following sections describe the SSML elements and options that can be used in your

Actions.

Note that not all of the elements and options described in the W3 SSML specification are

currently supported by Text-to-Speech. This page details which elements and options are

available for your application.

<speak>

The root element of the SSML response.

To learn more about the speak element, see the W3 specification.

Example

<speak>

my SSML content

</speak>

<break>

An empty element that controls pausing or other prosodic boundaries between words.

Using <break> between any pair of tokens is optional. If this element is not present between

words, the break is automatically determined based on the linguistic context.

To learn more about the break element, see the W3 specification.

Attributes

Attribute Description

Time Sets the length of the break by seconds or milliseconds (e.g. "3s" or "250ms").

https://www.w3.org/TR/speech-synthesis/
https://www.w3.org/TR/speech-synthesis/#edef_speak
https://www.w3.org/TR/speech-synthesis/#S3.2.3

Strength Sets the strength of the output's prosodic break by relative terms. Valid values are:

"x-weak", weak", "medium", "strong", and "x-strong". The value "none" indicates

that no prosodic break boundary should be outputted, which can be used to prevent

a prosodic break that the processor would otherwise produce.

Example

The following example shows how to use the <break> element to pause between steps:

<speak>

Step 1, take a deep breath. <break time="200ms"/>

Step 2, exhale.

Step 3, take a deep breath again. <break strength="weak"/>

Step 4, exhale.

</speak>

